MySQL优化/面试,这一篇文章全搞定

本文核心内容

MySQL优化/面试,这一篇文章全搞定插图

概述

为什么要优化
  • 系统的吞吐量瓶颈往往出现在数据库的访问速度上
  • 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢
  • 数据是存放在磁盘上的,读写速度无法和内存相比

如何优化
  • 设计数据库时:数据库表、字段的设计,存储引擎
  • 利用好MySQL自身提供的功能,如索引等
  • 横向扩展:MySQL集群、负载均衡、读写分离
  • SQL语句的优化(收效甚微)
字段设计

字段类型的选择,设计规范,范式,常见设计案例

原则:尽量使用整型表示字符串

存储IP

  • INET_ATON(str),address to numberINET_NTOA(number),number to address

MySQL内部的枚举类型(单选)和集合(多选)类型

但是因为维护成本较高因此不常使用,使用关联表的方式来替代enum

原则:定长和非定长数据类型的选择

decimal不会损失精度,存储空间会随数据的增大而增大。double占用固定空间,较大数的存储会损失精度。非定长的还有varchar、text

金额

对数据的精度要求较高,小数的运算和存储存在精度问题(不能将所有小数转换成二进制)

定点数decimal

price decimal(8,2)有2位小数的定点数,定点数支持很大的数

小单位大数额避免出现小数

元->分

字符串存储

定长char,非定长varchar、text(上限65535,其中varchar还会消耗1-3字节记录长度,而text使用额外空间记录长度)

原则:尽可能选择小的数据类型和指定短的长度

原则:尽可能使用 not null

非null字段的处理要比null字段的处理高效些!且不需要判断是否为null。

null在MySQL中,不好处理,存储需要额外空间,运算也需要特殊的运算符。如select null = null和select null <> null(<>为不等号)有着同样的结果,只能通过is null和is not null来判断字段是否为null。

如何存储?MySQL中每条记录都需要额外的存储空间,表示每个字段是否为null。因此通常使用特殊的数据进行占位,比如int not null default 0、string not null default ‘’

原则:单表字段不宜过多,二三十个就极限了

原则:可以预留字段

在使用以上原则之前首先要满足业务需求

关联表的设计

外键foreign key只能实现一对一或一对多的映射

一对多

使用外键

多对多

单独新建一张表将多对多拆分成两个一对多

一对一

如商品的基本信息(item)和商品的详细信息(item_intro),通常使用相同的主键或者增加一个外键字段(item_id)

范式 Normal Format

数据表的设计规范,一套越来越严格的规范体系(如果需要满足N范式,首先要满足N-1范式)。N

第一范式1NF:字段原子性

字段原子性,字段不可再分割。关系型数据库,默认满足第一范式注意比较容易出错的一点,在一对多的设计中使用逗号分隔多个外键,这种方法虽然存储方便,但不利于维护和索引

第二范式:消除对主键的部分依赖

即在表中加上一个与业务逻辑无关的字段作为主键主键:可以唯一标识记录的字段或者字段集合。
对主键的部分依赖:某个字段依赖复合主键中的一部分。解决方案:新增一个独立字段作为主键。

第三范式:消除对主键的传递依赖

传递依赖:B字段依赖于A,C字段又依赖于B。

存储引擎选择

早期问题:如何选择MyISAM和Innodb?现在不存在这个问题了,Innodb不断完善,从各个方面赶超MyISAM,也是MySQL默认使用的。
存储引擎Storage engine:MySQL中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。

功能差异

show engines

Engine

Support

Comment




InnoDBDEFAULTSupports transactions, row-level locking, and foreign keys    
MyISAMYESMyISAM storage engine    

存储差异

MyISAMInnodb




文件格式数据和索引是分别存储的,数据.MYD,索引.MYI数据和索引是集中存储的,.ibd
文件能否移动能,一张表就对应.frm、MYD、MYI3个文件否,因为关联的还有data下的其它文件
记录存储顺序按记录插入顺序保存按主键大小有序插入
空间碎片(删除记录并flush table 表名之后,表文件大小不变)产生。定时整理:使用命令optimize table 表名实现不产生
事务不支持支持
外键不支持支持
锁支持(锁是避免资源争用的一个机制,MySQL锁对用户几乎是透明的)表级锁定行级锁定、表级锁定,锁定力度小并发能力高

锁扩展表级锁(table-level lock):

lock tables <table_name1>,<table_name2>… read/write,unlock tables <table_name1>,<table_name2>…。

其中read是共享锁,一旦锁定任何客户端都不可读;write是独占/写锁,只有加锁的客户端可读可写,其他客户端既不可读也不可写。锁定的是一张表或几张表。

行级锁(row-level lock):锁定的是一行或几行记录。

共享锁:select * from <table_name> where <条件> LOCK IN SHARE MODE;,

对查询的记录增加共享锁;select * from <table_name> where <条件> FOR UPDATE;,对查询的记录增加排他锁。

这里值得注意的是:innodb的行锁,其实是一个子范围锁,依据条件锁定部分范围,而不是就映射到具体的行上,因此还有一个学名:间隙锁。

比如select * from stu where id < 20 LOCK IN SHARE MODE会锁定id在20左右以下的范围,你可能无法插入id为18或22的一条新纪录。

选择依据

如果没有特别的需求,使用默认的Innodb即可。MyISAM:以读写插入为主的应用程序,比如博客系统、新闻门户网站。Innodb:更新(删除)操作频率也高,或者要保证数据的完整性;并发量高,支持事务和外键保证数据完整性。比如OA自动化办公系统。

索引

关键字与数据的映射关系称为索引(==包含关键字和对应的记录在磁盘中的地址==)。关键字是从数据当中提取的用于标识、检索数据的特定内容。

索引检索为什么快?

  • 关键字相对于数据本身,==数据量小==
  • 关键字是==有序==的,二分查找可快速确定位置

图书馆为每本书都加了索引号(类别-楼层-书架)、字典为词语解释按字母顺序编写目录等都用到了索引。

MySQL中索引类型

普通索引(key),唯一索引(unique key),主键索引(primary key),全文索引(fulltext key)三种索引的索引方式是一样的,只不过对索引的关键字有不同的限制:

  • 普通索引:对关键字没有限制
  • 唯一索引:要求记录提供的关键字不能重复
  • 主键索引:要求关键字唯一且不为null

根据索引名删除普通索引、唯一索引、全文索引:alter table 表名 drop KEY 索引名

  • alter table user_index drop KEY name;alter table user_index drop KEY id_card;alter table user_index drop KEY information;

删除主键索引:alter table 表名 drop primary key(因为主键只有一个)。这里值得注意的是,如果主键自增长,那么不能直接执行此操作(自增长依赖于主键索引): 需要取消自增长再行删除:

  • alter table user_index-- 重新定义字段MODIFY id int,drop PRIMARY KEY

但通常不会删除主键,因为设计主键一定与业务逻辑无关。

由上图可看出此SQL语句是按照主键索引来检索的。

执行计划是:当执行SQL语句时,首先会分析、优化,形成执行计划,在按照执行计划执行。

索引使用场景(重点)

where

上图中,根据id查询记录,因为id字段仅建立了主键索引,因此SQL执行可选的索引只有主键索引,如果有多个,最终会选一个较优的作为检索的依据。

  • -- 增加一个没有建立索引的字段alter table innodb1 add sex char(1);-- 按sex检索时可选的索引为nullEXPLAIN SELECT * from innodb1 where sex='男'

  可以尝试在一个字段未建立索引时,根据该字段查询的效率,然后对该字段建立索引(alter table 表名 add index(字段名)),同样的SQL执行的效率,你会发现查询效率会有明显的提升(数据量越大越明显)。

order by

当我们使用order by将查询结果按照某个字段排序时

如果该字段没有建立索引,那么执行计划会将查询出的所有数据使用外部排序(将数据从硬盘分批读取到内存使用内部排序,最后合并排序结果).

这个操作是很影响性能的,因为需要将查询涉及到的所有数据从磁盘中读到内存(如果单条数据过大或者数据量过多都会降低效率),更无论读到内存之后的排序了。

但是如果我们对该字段建立索引alter table 表名 add index(字段名),那么由于索引本身是有序的,因此直接按照索引的顺序和映射关系逐条取出数据即可。

而且如果分页的,那么只用取出索引表某个范围内的索引对应的数据,而不用像上述那取出所有数据进行排序再返回某个范围内的数据。

join

对join语句匹配关系(on)涉及的字段建立索引能够提高效率

索引覆盖

如果要查询的字段都建立过索引,那么引擎会直接在索引表中查询而不会访问原始数据(否则只要有一个字段没有建立索引就会做全表扫描),这叫索引覆盖。因此我们需要尽可能的在select后==只写必要的查询字段==,以增加索引覆盖的几率。这里值得注意的是不要想着为每个字段建立索引,因为优先使用索引的优势就在于其体积小。

语法细节(要点)

在满足索引使用的场景下(where/order by/join on或索引覆盖),索引也不一定被使用

字段要独立出现

比如下面两条SQL语句在语义上相同,但是第一条会使用主键索引而第二条不会。

  • select * from user where id = 20-1;select * from user where id+1 = 20;




like查询,不能以通配符开头

比如搜索标题包含mysql的文章:

  • select * from article where title like ‘%mysql%’;

这种SQL的执行计划用不了索引(like语句匹配表达式以通配符开头),因此只能做全表扫描,效率极低,在实际工程中几乎不被采用。而一般会使用第三方提供的支持中文的全文索引来做。

复合索引只对第一个字段有效

建立复合索引:

  • alter table person add index(first_name,last_name);

其原理就是将索引先按照从first_name中提取的关键字排序,如果无法确定先后再按照从last_name提取的关键字排序,也就是说该索引表只是按照记录的first_name字段值有序。因此

  • select * from person where first_name = ?是可以利用索引的,而select * from person where last_name = ?无法利用索引。

那么该复合索引的应用场景是什么?==组合查询==比如对于select * person from first_name = ? and last_name = ?,
复合索引就比对first_name和last_name单独建立索引要高效些。

很好理解,复合索引首先二分查找与first_name = ?匹配的记录,再在这些记录中二分查找与last_name匹配的记录,只涉及到一张索引表。

而分别单独建立索引则是在first_name索引表中二分找出与first_name = ?匹配的记录,再在last_name索引表中二分找出与last_name = ?的记录,两者取交集。

or,两边条件都有索引可用

一但有一边无索引可用就会导致整个SQL语句的全表扫描

状态值,不容易使用到索引

如性别、支付状态等状态值字段往往只有极少的几种取值可能,这种字段即使建立索引,也往往利用不上。这是因为,一个状态值可能匹配大量的记录,这种情况MySQL会认为利用索引比全表扫描的效率低,从而弃用索引。

索引是随机访问磁盘,而全表扫描是顺序访问磁盘,这就好比有一栋20层楼的写字楼,楼底下的索引牌上写着某个公司对应不相邻的几层楼,你去公司找人,与其按照索引牌的提示去其中一层楼没找到再下来看索引牌再上楼,不如从1楼挨个往上找到顶楼。

如何创建索引

  • 建立基础索引:在where、order by、join字段上建立索引。
  • 优化,组合索引:基于业务逻辑
    • 如果条件经常性出现在一起,那么可以考虑将多字段索引升级为==复合索引==
    • 如果通过增加个别字段的索引,就可以出现==索引覆盖==,那么可以考虑为该字段建立索引
    • 查询时,不常用到的索引,应该删除掉

索引的存储结构

BTree

btree(多路平衡查找树)是一种广泛应用于==磁盘上实现索引功能==的一种数据结构,也是大多数数据库索引表的实现。

BTree的一个node可以存储多个关键字,node的大小取决于计算机的文件系统,因此我们可以通过减小索引字段的长度使结点存储更多的关键字。如果node中的关键字已满,那么可以通过每个关键字之间的子节点指针来拓展索引表,但是不能破坏结构的有序性。

B+Tree聚簇结构

聚簇结构(也是在BTree上升级改造的)中,关键字和记录是存放在一起的。在MySQL中,仅仅只有Innodb的==主键索引为聚簇结构==,其它的索引包括Innodb的非主键索引都是典型的BTree结构。

哈希索引

在索引被载入内存时,使用哈希结构来存储。

查询缓存

缓存select语句的查询结果

在配置文件中开启缓存

windows上是my.ini,linux上是my.cnf在[mysqld]段中配置query_***_type:

  • 0:不开启
  • 1:开启,默认缓存所有,需要在SQL语句中增加select sql-no-***提示来放弃缓存
  • 2:开启,默认都不缓存,需要在SQL语句中增加select sql-***来主动缓存(==常用==)

更改配置后需要重启以使配置生效,
重启后可通过show variables like ‘query_***_type’;来查看:

将查询结果缓存

  • select sql_*** * from user;

重置缓存

  • reset query ***;

缓存失效问题(大问题)

当数据表改动时,基于该数据表的任何缓存都会被删除。(表层面的管理,不是记录层面的管理,因此失效率较高)

注意事项

  • 应用程序,不应该关心query ***的使用情况。可以尝试使用,但不能由query ***决定业务逻辑,因为query ***由DBA来管理。
  • 缓存是以SQL语句为key存储的,因此即使SQL语句功能相同,但如果多了一个空格或者大小写有差异都会导致匹配不到缓存。
分区

一般情况下我们创建的表对应一组存储文件,使用MyISAM存储引擎时是一个.MYI和.MYD文件,使用Innodb存储引擎时是一个.ibd和.frm(表结构)文件。

当数据量较大时(一般千万条记录级别以上),MySQL的性能就会开始下降,这时我们就需要将数据分散到多组存储文件,==保证其单个文件的执行效率==。最常见的分区方案是按id分区,如下将id的哈希值对10取模将数据均匀分散到10个.ibd存储文件中:

  • create table article( id int auto_increment PRIMARY KEY, title varchar(64), content text)PARTITION by HASH(id) PARTITIONS 10

查看data目录:

  ==服务端的表分区对于客户端是透明的==,客户端还是照常插入数据,但服务端会按照分区算法分散存储数据。

MySQL提供的分区算法

==分区依据的字段必须是主键的一部分==,分区是为了快速定位数据,因此该字段的搜索频次较高应作为强检索字段,否则依照该字段分区毫无意义

hash(field)

相同的输入得到相同的输出。输出的结果跟输入是否具有规律无关。==仅适用于整型字段==

key(field)

和hash(field)的性质一样,只不过key是==处理字符串==的,比hash()多了一步从字符串中计算出一个整型在做取模操作。

  • create table article_key( id int auto_increment, title varchar(64), content text, PRIMARY KEY (id,title) -- 要求分区依据字段必须是主键的一部分)PARTITION by KEY(title) PARTITIONS 10




range算法

是一种==条件分区==算法,按照数据大小范围分区(将数据使用某种条件,分散到不同的分区中)。如下,按文章的发布时间将数据按照2018年8月、9月、10月分区存放:

  • create table article_range( id int auto_increment, title varchar(64), content text, created_time int, -- 发布时间到1970-1-1的毫秒数 PRIMARY KEY (id,created_time) -- 要求分区依据字段必须是主键的一部分)charset=utf8PARTITION BY RANGE(created_time)( PARTITION p201808 VALUES less than (1535731199), -- select UNIX_TIMESTAMP('2018-8-31 23:59:59') PARTITION p201809 VALUES less than (1538323199), -- 2018-9-30 23:59:59 PARTITION p201810 VALUES less than (1541001599) -- 2018-10-31 23:59:59);




注意:条件运算符只能使用==less than==,这以为着较小的范围要放在前面,比如上述p201808,p201819,p201810分区的定义顺序依照created_time数值范围从小到大,不能颠倒。

  • insert into article_range values(null,'MySQL优化','内容示例',1535731180);flush tables;    -- 使操作立即刷新到磁盘文




由于插入的文章的发布时间1535731180小于1535731199(2018-8-31 23:59:59),因此被存储到p201808分区中,这种算法的存储到哪个分区取决于数据状况。

list算法

也是一种条件分区,按照列表值分区(in (值列表))。

  • create table article_list( id int auto_increment, title varchar(64), content text, status TINYINT(1), -- 文章状态:0-草稿,1-完成但未发布,2-已发布 PRIMARY KEY (id,status) -- 要求分区依据字段必须是主键的一部分)charset=utf8PARTITION BY list(status)( PARTITION writing values in(0,1), -- 未发布的放在一个分区 PARTITION published values in (2) -- 已发布的放在一个分区);




分区管理语法

range/list

增加分区

前文中我们尝试使用range对文章按照月份归档,随着时间的增加,我们需要增加一个月份:

  • alter table article_range add partition( partition p201811 values less than (1543593599) -- select UNIX_TIMESTAMP('2018-11-30 23:59:59') -- more);




删除分区

  • alter table article_range drop PARTITION p201808

注意:==删除分区后,分区中原有的数据也会随之删除!==

key/hash

新增分区

  • alter table article_key add partition partitions 4

key/hash分区的管理不会删除数据,但是每一次调整(新增或销毁分区)都会将所有的数据重写分配到新的分区上。==效率极低==,最好在设计阶段就考虑好分区策略。

分区的使用

当数据表中的数据量很大时,分区带来的效率提升才会显现出来。只有检索字段为分区字段时,分区带来的效率提升才会比较明显。因此,==分区字段的选择很重要==,并且==业务逻辑要尽可能地根据分区字段做相应调整==(尽量使用分区字段作为查询条件)。

水平分割和垂直分割

水平分割:通过建立结构相同的几张表分别存储数据垂直分割:将经常一起使用的字段放在一个单独的表中,分割后的表记录之间是一一对应关系。

分表原因

  • 为数据库减压
  • 分区算法局限
  • 数据库支持不完善(5.1之后mysql才支持分区操作)

id重复的解决方案

  • 借用第三方应用如mem***、redis的id自增器
  • 单独建一张只包含id一个字段的表,每次自增该字段作为数据记录的id
集群

横向扩展:从根本上(单机的硬件处理能力有限)提升数据库性能 。由此而生的相关技术:==读写分离、负载均衡==

安装和配置主从复制

环境

  • centos6.5(虚拟机)
  • mysql5.7(下载地址)

安装和配置可以参考我的其他文章

配置主从节点可以参考我的其他文章

读写分离

读写分离是依赖于主从复制,而主从复制又是为读写分离服务的。因为主从复制要求slave不能写只能读(如果对slave执行写操作,那么show slave status将会呈现Slave_SQL_Running=NO,此时你需要按照前面提到的手动同步一下slave)。

测试读写分离

如何测试读是从slave中读的呢?可以将写后复制到slave中的数据更改,再读该数据就知道是从slave中读了。==注意==,一但对slave做了写操作就要重新手动将slave与master同步一下,否则主从复制就会失效。

负载均衡

负载均衡算法

  • 轮询
  • 加权轮询:按照处理能力来加权
  • 负载分配:依据当前的空闲状态(但是测试每个节点的内存使用率、CPU利用率等,再做比较选出最闲的那个,效率太低)

高可用

在服务器架构时,为了保证服务器7×24不宕机在线状态,需要为每台单点服务器(由一台服务器提供服务的服务器,如写服务器、数据库中间件)提供冗余机。

对于写服务器来说,需要提供一台同样的写-冗余服务器,当写服务器健康时(写-冗余通过心跳检测),写-冗余作为一个从机的角色复制写服务器的内容与其做一个同步;当写服务器宕机时,写-冗余服务器便顶上来作为写服务器继续提供服务。对外界来说这个处理过程是透明的,即外界仅通过一个IP访问服务。

SQL

线上DDL

DDL(Database Definition Language)是指数据库表结构的定义(create table)和维护(alter table)的语言。

在线上执行DDL,在低于MySQL5.6版本时会导致全表被独占锁定,此时表处于维护、不可操作状态,这会导致该期间对该表的所有访问无法响应。但是在MySQL5.6之后,支持Online DDL,大大缩短了锁定时间。

优化技巧是采用的维护表结构的DDL(比如增加一列,或者增加一个索引),是==copy==策略。

思路:创建一个满足新结构的新表,将旧表数据==逐条==导入(复制)到新表中,以保证==一次性锁定的内容少==(锁定的是正在导入的数据),同时旧表上可以执行其他任务。

导入的过程中,将对旧表的所有操作以日志的形式记录下来,导入完毕后,将更新日志在新表上再执行一遍(确保一致性)。

最后,新表替换旧表(在应用程序中完成,或者是数据库的rename,视图完成)。但随着MySQL的升级,这个问题几乎淡化了。

数据库导入语句

在恢复数据时,可能会导入大量的数据。此时为了快速导入,需要掌握一些技巧:

  • 导入时==先禁用索引和约束==:
  • alter table table-name disable keys

待数据导入完成之后,再开启索引和约束,一次性创建索引

  • alter table table-name enable keys
  • 数据库如果使用的引擎是Innodb,那么它==默认会给每条写指令加上事务==(这也会消耗一定的时间),因此建议先手动开启事务,再执行一定量的批量导入,最后手动提交事务。
  • 如果批量导入的SQL指令格式相同只是数据不同,那么你应该先prepare==预编译==一下,这样也能节省很多重复编译的时间。

limit offset,rows

尽量保证不要出现大的offset,比如limit 10000,10相当于对已查询出来的行数弃掉前10000行后再取10行,完全可以加一些条件过滤一下(完成筛选),而不应该使用limit跳过已查询到的数据。

这是一个==offset做无用功==的问题。对应实际工程中,要避免出现大页码的情况,尽量引导用户做条件过滤。

select * 要少用

即尽量选择自己需要的字段select,但这个影响不是很大,因为网络传输多了几十上百字节也没多少延时,并且现在流行的ORM框架都是用的select *,

只是我们在设计表的时候注意将大数据量的字段分离,比如商品详情可以单独抽离出一张商品详情表,这样在查看商品简略页面时的加载速度就不会有影响了。

order by rand()不要用

它的逻辑就是随机排序(为每条数据生成一个随机数,然后根据随机数大小进行排序)。

如select * from student order by rand() limit 5的执行效率就很低,因为它为表中的每条数据都生成随机数并进行排序,而我们只要前5条。

解决思路:在应用程序中,将随机的主键生成好,去数据库中利用主键检索。

单表和多表查询

多表查询:join、子查询都是涉及到多表的查询。如果你使用explain分析执行计划你会发现多表查询也是一个表一个表的处理,最后合并结果。

因此可以说单表查询将计算压力放在了应用程序上,而多表查询将计算压力放在了数据库上。

现在有ORM框架帮我们解决了单表查询带来的对象映射问题(查询单表时,如果发现有外键自动再去查询关联表,是一个表一个表查的)。

count(*)

在MyISAM存储引擎中,会自动记录表的行数,因此使用count(*)能够快速返回。而Innodb内部没有这样一个计数器,需要我们手动统计记录数量,解决思路就是单独使用一张表:idtablecount




1student100

limit 1

如果可以确定仅仅检索一条,建议加上limit 1,其实ORM框架帮我们做到了这一点(查询单条的操作都会自动加上limit 1)。

慢查询日志

用于记录执行时间超过某个临界值的SQL日志,用于快速定位慢查询,为我们的优化做参考。

开启慢查询日志

配置项:slow_query_log可以使用show variables like ‘slov_query_log’
查看是否开启,如果状态值为OFF,
可以使用set GLOBAL slow_query_log = on来开启,它会在datadir下产生一个xxx-slow.log的文件。

设置临界时间配置项:long_query_time查看:show VARIABLES like 'long_query_time',
单位秒设置:set long_query_time=0.

实操时应该从长时间设置到短的时间,即将最慢的SQL优化掉

查看日志

一旦SQL超过了我们设置的临界时间就会被记录到xxx-slow.log中

profile信息

配置项:profiling

开启profile

set profiling=on开启后,所有的SQL执行的详细信息都会被自动记录下来

mysql> 
show variables like 'profiling';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| profiling     | OFF   |
+---------------+-------+
1 row in set, 
1 warning (0.00 sec)

mysql> 
set profiling=on;
Query OK, 
0 rows affected, 
1 warning (0.00 sec)

查看profile信息

mysql> 
show variables like 'profiling';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| profiling     | ON    |
+---------------+-------+
1 row in set, 1 warning (0.00 sec)

mysql> 
insert into article values (null,'test profile',':)');
Query OK, 1 row affected (0.15 sec)

mysql> 
show profiles;
+----------+------------+----------+
| Query_ID | Duration   | Query                                                 

|        1 | 0.00086150 | show variables like 'profiling'                       
|        2 | 0.15027550 | insert into article values (null,'test profile',':)') |
+----------+------------+-----------+

通过Query_ID查看某条SQL所有详细步骤的时间

show profile for query Query_ID上面show profiles的结果中,每个SQL有一个Query_ID,可以通过它查看执行该SQL经过了哪些步骤,各消耗了多场时间

服务器配置

以下的配置全都取决于实际的运行环境

  • max_connections,最大客户端连接数
  • table_open_***,表文件句柄缓存(表数据是存储在磁盘上的,缓存磁盘文件的句柄方便打开文件读取数据)
  • key_buffer_size,索引缓存大小(将从磁盘上读取的索引缓存到内存,可以设置大一些,有利于快速检索)
  • innodb_buffer_pool_size,Innodb存储引擎缓存池大小(对于Innodb来说最重要的一个配置,如果所有的表用的都是Innodb,那么甚至建议将该值设置到物理内存的80%,Innodb的很多性能提升如索引都是依靠这个)
  • innodb_file_per_table(innodb中,表数据存放在.ibd文件中,如果将该配置项设置为ON,那么一个表对应一个ibd文件,否则所有innodb共享表空间)

压测工具mysqlslap

安装MySQL时附带了一个压力测试工具mysqlslap(位于bin目录下)

MySQL优化/面试,这一篇文章全搞定插图1

聚焦技术与人文,分享干货,共同成长
更多内容请关注“数据与人”

MySQL优化/面试,这一篇文章全搞定插图2

为您推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注